PRICING AND RESERVING LIFECYCLE MACHINE LEARNING APPLICATIONS

Neil Covington Global Head of General Insurance, FIS

ABOUT OUR SPEAKER

Neil Covington Global Head of General Insurance and Al/ML Lead, FIS

With 30 years of industry experience, including serving as Chief Actuary and Head Actuary for multi-line, multinational businesses, Neil Covington's expertise covers the design, development and implementation of risk models.

With a knack for translating complex concepts to diverse audiences, Neil specializes in capital modelling, IFRS 17, reserving, pricing and AI/ML. At FIS, he is also responsible for global GI and AI/ML insurance solutions management and development, alongside pre-sales and professional services support.

FINTECH THE FINANCIAL WORLD IS BUILT ON

ECONOMIES RELY ON FIS

Trusted to move the world's money.

was processed on our asset management technology in 2022. That's nearly half the world's total and 1.5x the GDP of the U.S.

BUSINESSES RUN ON FIS

Our business is powering business

95%

of the world's best banks use our technology

80%

of the largest asset managers

\$112B

Processed in transactions last year

200K+

Clients worldwide rely on our technology

INNOVATOR BUILD ON FI

We are the innovator's innovator

50%

of the world's most innovative companies are clients or partners

1000 carbon neutrality and renewable energy by 2025

FIS TODAY

FIS INSURANCE RISK SUITE

TRUST 34+ years 10.000+ users

70+ countries

REDUCE

the total cost of owning digital technology

RiskTech

Insurance

GAIN economies of scale with outsourced services

riften Premiums

managed Net

IMPROVE

efficiency and save money on business processes

COMPLETE

Life, Health, General and **Annuity**

GENERAL INSURERS, WE HAVE YOU COVERED....

Fis

POLICY LIFECYCLE

POLICY LIFECYCLE

POLICY LIFECYCLE

Price GLMs, GAMs Frequency and severity all periods

Post Exposure Pre-Claim

Pre-Exposure

IBNR Paid, incurred, frequency, severity triangles Frequency and severity this period

RBNS/Case, IBNER Paid, incurred triangles Severity this period, this claim

POLICY LIFECYCLE

PREDICTIVE MODELLING FRAMEWORK

PREDICTIVE MODELLING

PREDICTIVE MODELLING

Continuous – Regression

RISK COST CLAIM COST

PREDICTIVE MODELLING

Discrete – Classification

ACCEPT RISK FRAUDULENT MANAGE OR CLAIM PAY CLAIM

PREDICTIVE MODELLING FRAMEWORK

PREDICTIVE MODELLING FRAMEWORK

Pre-exposure

PREDICTIVE MODELLING FRAMEWORK

Post exposure, pre and post claim

MODEL PREDICTORS AND PREDICTIONS

What affects the outcome?

Cause

Effect

DIMENSIONALITY REDUCTION

What really matters?

- Transformation of data from a high-dimensional space into a low-dimensional space
- · Low-dimensional representation retains some meaningful properties of the original data
- Converging to intrinsic dimensions
- Dimensions for shape or colour?
 - Shape requires all dimensions
 - Colour only requires one

DIMENSIONALITY REDUCTION

Features

Feature Selection

Find a subset of features

- Filter
- Wrapper
- Embedded (try it and see) e.g. GLM factor regression

Feature Extraction

Transform the data

- Linear e.g. Principal Component Analysis
- Non-Linear e.g. Autoencoder, Clustering

Pricing Shape

- Cover
- Policyholder age
- Location
- Type of vehicle
- Age of vehicle
- Value of vehicle
- Mileage
- Policy duration
- Marital status
- No claims period
- Voluntary excess

...

MODEL TYPES

Forecast	 One of the most prominent predictive model types Predict future values based on historical data Manage metric value predictions by estimating the numeric value for new data based on learnings from historical data.
Classification	 Used to assign classes to data Generally easier and more cost-effective to implement than predicting continuous values Examples of these types of models include binary, multi-class and regression models
Outlier	 Used to identify anomalous data points that do not fit the pattern of the rest of the data For example, an outlier model might be used to identify incorrect credit card charges or other fraudulent numbers It would look at individual data points to determine whether they are incorrect compared to the rest of the data
Time Series	 Used to predict future events based on past data ordered in a sequence It is an econometric technique used to predict future values based on past values A time series model uses the trends, seasonality and cyclicality of a system, as well as other factors to forecast future behaviour
Clustering	 Used to identify groups of data points that are very similar to each other The clustering model is used to group similar items, which can help with tasks like customer segmentation and finding the best way to market products

MODEL TYPES – APPLICATIONS

CURRENT APPLICATIONS

Motor Example

Pricing

- Cover
- Policyholder age
- Location
- Type of vehicle
- Age of vehicle
- Value of vehicle
- Mileage
- Policy duration
- Marital status
- No claims period
- Voluntary excess

• Cover

Fis

•

Motor Example

Pricing

- Cover
- Policyholder age
- Location
- Type of vehicle
- Age of vehicle
- Value of vehicle
- Mileage
- Policy duration
- Marital status
- No claims period
- Voluntary excess

Reserving

- Cover
- Policyholder age
- Location
- Type of vehicle
- Age of vehicle
- Value of vehicle
- Mileage

•

- Policy duration
- Marital status
- No claims period
- Voluntary excess

•

Motor Example

MODEL TYPES

Motor Example

Pricing

- GLM
- GAM
- Other machine learning
 - Random Forest
 - Gradient Boosting
 - Etc.

Reserving • Triangles

MODEL TYPES

Motor Example

Pricing

- GLM
- GAM
- Other machine learning
 - Random Forest
 - Gradient Boosting
 - Etc.

Reserving

- Triangles
- GLM
- GAM
- Other machine learning
 - Random Forest
 - Gradient Boosting
 - Etc.

Motor Example

Prising

• Overfitting?

- Models the training data too well
- well
- Model learns the detail and noise in training data
- Negatively impacts the performance of the model on new data
- Noise or random fluctuations in training data picked up and learned as concepts by the model

Reserving

- Underfitting?
 - Model can neither model training data nor generalize to new data
 - Not a suitable model

FIS

SHAP Values - Claim Severity, Gradient BOOST Model

GLM Regression – Claim Severity

GLM Regression and Boosting – Claim Severity

SHAP Values - Claim Severity, Attritional Large Split

Fis

SHAP Values - Claim Severity, Attritional Large Split

FIS

RESERVING

Why not using Machine Learning and more predictors

Triangles aggregate data for statistical significance Not statistically significant enough if split?	Quality and availability of detailed claims data?	Claims development based on current paid and estimate levels
Investigating individual claim reserving methods	Triangles widely understood and accepted	Machine learning less explainable

PRICING

Why not using other Machine Learning algorithms

GLMs and GAMs more widely understood, accepted and programmable

Other machine learning algorithms less explainable

EXPLAINABILITY

Interpretability Vs Performance

EXPLAINABILITY

MODEL COMPARISON

41

FEAR OF THE UNKNOWN OR BEING DIFFERENT?

THE FUTURE

WHAT'S IMPORTANT

HYBRID MODELS

Reduce and Refine Data

Feature extraction instead of feature selection

Clustering to group risks and claims for applying models

Dimensionality reduction or expansion to identify intrinsic dimensions for each of pricing and reserving

HYBRID MODELS

Explainability Options

HYBRID MODELS

Explainability Options

SOLUTION PERSPECTIVE

INSURANCE RISK SUITE GLEDITION

Actuari<u>es</u>

Underwriters

Risk Managers

INSURANCE RISK SUITE GI EDITION

Out of the box functionality Transparent customisable calculations Rapid development environment

Fis

AI AND MACHINE LEARNING

Ask us what we are doing

GI EDITION IS READY ARE YOU?

Fis

©2024 FIS and/or its subsidiaries. All Rights Reserved. FIS confidential and proprietary information.

THANK YOU FOR LISTENING

GI EDITION IS READY ARE YOU?

Fis

Thank you for joining today's **PRICING AND RESERVING** LIFECYCLE session

Any questions? Feel free to reach out to me: neil.covington@fisglobal.com

